
Estimation of surface temperature in two-dimensional inverse
heat conduction problems

Han-Taw Chen a,*, Shen-Yih Lin a, Lih-Chuan Fang b

a Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC
b Chinese Military Academy, Fengshan, Kaoshiung 830, Taiwan, ROC

Received 15 October 1999; received in revised form 22 June 2000

Abstract

A hybrid numerical algorithm of the Laplace transform technique and ®nite-di�erence method with a sequential-in-

time concept and the least-squares scheme is proposed to predict the unknown surface temperature in two-dimensional

inverse heat conduction problems. In the present study, the expression of the surface temperature is unknown a priori.

The whole time domain is divided into several analysis sub-time intervals and then the surface temperature in each

analysis interval is estimated. To enhance the accuracy and e�ciency of the present method, a good comparison be-

tween the present estimations and previous results is demonstrated. Results show that good estimations on the surface

temperature can be obtained from the knowledge of the transient temperature recordings only at a few selected lo-

cations even for the case with measurement errors. It is worth mentioning that the unknown surface temperature can be

accurately estimated even though the thermocouples are located far from the estimated surface. Due to the application

of the Laplace transform technique, the unknown surface temperature distribution can be estimated from a speci®c

time. Ó 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Quantitative studies of the heat transfer processes

occurring in the industrial applications require accurate

knowledge of the thermal properties of the material and

surface conditions. Practically, measurements are often

made of temperature and displacement, etc. Thereafter,

these measurements are ®tted and then physical quan-

tities and surface conditions may be estimated from

these curve-®tted measurements. Such problems are

called inverse problems and have become an interesting

subject recently. To date, various methods have been

developed for the analysis of the inverse heat conduction

problems involving the estimation of surface conditions

from measured temperatures inside the material [1±12].

However, most analytical and numerical methods were

only used to deal with one-dimensional inverse heat

conduction problems (IHCP). A few works were pre-

sented for two- or three-dimensional IHCP because the

di�culty of these problems was more pronounced than

one-dimensional IHCP.

Sparrow et al. [3] and Woo and Chow [4] applied the

Laplace transform method to one-dimensional IHCP.

Their results have good accuracy only for small value of

time. Thus the application of their methods [3,4] was

limited. Imber [5] obtained an analytical solution of the

two-dimensional IHCP. Busby and Trujillo [6] applied

the dynamic programing method to investigate the two-

dimensional IHCP. The boundary element method in

conjunction with the Beck's sensitivity analysis and

least-squares method was presented for the solution of

two-dimensional linear IHCP by Zabaras and Liu [7].

Yang and Chen [8] applied the ®nite-di�erence method

in conjunction with the linear least-squares method to

estimate the one-sided boundary condition in two-

dimensional IHCP. In their work [8], the unknown

surface temperature was parametrized and its functional

form was also given a priori. Thus a few measurement

locations can be su�cient to estimate the unknown

surface temperature. However, the e�ect of the mea-

surement errors on the estimated surface temperature
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cannot be neglected. Yang [9] and Hsu et al. [10] also

applied the same inverse technique to analyze other two-

dimensional IHCP. In order to estimate the heat ¯ux at

the surface from experimentally measured transient

temperature data, Osman et al. [11] presented a com-

bined function speci®cation and regularization method

with a sequential-in-time concept.

Chen and Chang [12] have ever used the hybrid

method of the Laplace transform technique and ®nite-

di�erence method to estimate the unknown surface

temperature in one-dimensional IHCP using measured

nodal temperatures inside the material at any speci®c

time without measurement errors. In general, there ex-

ists an optimum combination of the time step and the

mesh size for error control of the numerical solution.

Thus the present study applies the Laplace transform

technique and ®nite-di�erence method with a sequential-

in-time concept to estimate the unknown surface tem-

perature in two-dimensional IHCP. The functional form

of the surface temperature is unknown a priori in the

present study. In order to evidence the accuracy of the

estimates, more temperature measurements are needed

than the number of unknowns. In performing the nu-

merical simulation of the present study, the whole time

domain is divided into several analysis sub-time intervals

and then the surface temperature in each analysis in-

terval is estimated. The computational procedure for the

estimation of the surface temperature is performed re-

peatedly until the sum of the squares of the deviations

between the calculated and measured temperatures be-

comes minimum. In order to show the e�ciency of the

present method in estimating the surface temperature

from temperature measurements, a comparison between

the present estimates and results given by Yang and

Chen [8] is also made.

In experiments, the measurement of temperature is,

in general, somewhat inaccurate. This may be due to

human error, but more often, it is due to inherent lim-

itations in the equipment being used to make the

measurements. In the inverse heat conduction problem,

slight inaccuracies in the measured interior temperatures

can a�ect the accuracy of estimated surface condition.

Thus the e�ect of measurement errors on the estimation

of the surface temperature will be investigated in the

present analysis.

2. Mathematical formulation

Consider a square plane plate with the length of the

side L. The initial temperature is T �0 . For time t� > 0, the

boundaries at x� � 0 and y� � L keep insulated. The

surface temperature at y� � 0 is isothermal and is equal

to T �0 . For the direct heat conduction problem, the

temperature ®eld in the plane plate as a function of

space and time can be determined by providing the

surface temperature at x� � L. Conversely, the surface

temperature at x� � L needs to be estimated unless ad-

ditional information on temperature in the slab is given.

For convenience of numerical analysis, the following

dimensionless parameters are introduced

T � T � ÿ T �0
T �0

; x � x�

L
; y � y�

L
; t � at�

L2
; �1�

where a is the thermal di�usivity.

In order to compare with the results of Yang and

Chen [8], the dimensionless form of a two-dimensional

heat conduction problem in the Cartesian coordinate

system with the dimensionless parameters in Eq. (1), as

shown in Fig. 1, is illustrated

oT
ot
� o2T

ox2
� o2T

oy2
in 0 < x < 1; 0 < y < 1; 0

< t6 tf �2�

Nomenclature

Ci undetermined coe�cient

F �y; t� estimated function

ff g force matrix

J number of thermocouples

�k� global conduction matrix

L side length of a square plane plate

`x distance between two nodes in the x-direction

`y distance between two nodes in the y-direction

M number of discrete measurement times

n number of measurements

nx number of nodes in the x-direction

ny number of nodes in the y-direction

s Laplace transform parameter

T temperature

t dimensionless time

tf dimensionless ®nal time

x; y dimensionless spatial coordinates

Greek symbols

a thermal di�usivity
~T transformed dimensionless temperature

f ~Tg global dimensionless temperature matrix in

the transform domain

r� standard deviation of the mean

x averaged random error
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with the dimensionless boundary conditions

T � F �y; t� at x � 1; �3�
T � 0 at y � 0; �4�
oT
ox
� 0 at x � 0; �5�

oT
oy
� 0 at y � 1 �6�

and the dimensionless initial condition

T � 0 for t � 0; �7�
where tf is the dimensionless ®nal time for temperature

measurements. The continuous surface temperature

function F �y; t� in Eq. (3) should be the temporal and

spatial distribution. It is unknown and will be estimated

from some temperature measurements.

To estimate the unknown function F �y; t�, the ad-

ditional information of discrete temperature measure-

ments is required. Thus the temperature histories at

some locations are measured in the plane plate. It is

assumed that J thermocouples are used to record the

temperature information at these selected locations, as

shown in Table 1. The temperature histories taken from

the thermocouples at successive speci®c dimensionless

time tm are denoted by T mea
i;m ; i � 1; . . . ; J and m � 1; . . . ;

M , where M denotes the number of the discrete mea-

surement times. The temperature histories measured by

these thermocouples will be used to estimate F �y; t�.
The simulated data of measurements, T mea

i;m , can be

obtained by adding small random errors to the exact

values from the solution to the direct problem. T mea
i;m used

in the present inverse analysis can be expressed as

T mea
i;m � T exa

i;m �1� x�; m � 1; . . . ;M �8�

where x represents the averaged random error and is

assumed to be within )0.05 to 0.05 in the present study.

r� is the standard deviation of the mean with respect to

the exact data and is de®ned as [13]

r� �
XM

m�1

�T mea
i;m

"
ÿ T exa

i;m �2
#1=2,

M ; m � 1; . . . ;M : �9�

In practical applications, the actual measured pro®les

often exhibit random oscillations owing to measurement

errors. Thus a polynomial function can be used to

®t these measured data by using the least-squares

scheme [13].

In order to remove the time-dependent terms from

the governing di�erential equation (2) and boundary

conditions (3)±(6) with the initial condition (7), the

method of the Laplace transform is employed [12,14,15].

The Laplace transform of a function /�t� is de®ned

as follows:

~/�s� �
Z 1

0

/�t�eÿst dt; �10�

where s is the Laplace transform parameter.

The Laplace transform of equations (2)±(6) gives

o2 ~T
ox2
� o2 ~T

oy
ÿ s ~T � 0 in 0 < x < 1; 0 < y < 1 �11�

and

~T � ~F �y; s� at x � 1; �12�
~T � 0 at y � 0; �13�
o ~T
ox
� 0 at x � 0; �14�

o ~T
oy
� 0 at y � 1: �15�

The discretized forms of Eqs. (11)±(15) that can be ob-

tained by using the central di�erence approximation are,

respectively, given as

Table 1

Measurement locations of the present study and Yang and

Chen [8]

Yang and Chen

[8]

Present study

Case A Case B

�0:5; 0:4� �0:6; 0:1� �0:1; 0:2�
�0:5; 0:6� �0:5; 0:3� �0:1; 0:4�
�0:4; 0:5� �0:4; 0:7� �0:1; 0:6�
�0:5; 0:4� �0:6; 0:1� �0:1; 0:2�
�0:5; 0:6� �0:5; 0:3� �0:1; 0:4�
�0:4; 0:5� �0:4; 0:7� �0:1; 0:6�
�0:6; 0:5� �0:5; 0:9� �0:1; 0:8�

Fig. 1. Geometry of two-dimensional plane plate.
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~Tj�1;k ÿ 2 ~Tj;k � ~Tjÿ1;k

`2
x

�
~Tj;k�1 ÿ 2 ~Tj;k � ~Tj;kÿ1

`2
y

� s ~Tj;k ;

j � 1; 2; . . . ; nx; k � 1; 2; . . . ; ny �16�
and

~Tnx ;k � ~F ��k ÿ 1�`y ; s�; k � 1; 2; . . . ; ny ; �17�

~Tj;1 � 0; j � 1; 2; . . . ; nx; �18�

~T0;k � ~T2;k ; k � 1; 2; . . . ; ny ; �19�

~Tj;nyÿ1 � ~Tj;ny�1; j � 1; 2; . . . nx; �20�
where nx and ny indicate the number of nodes along x-

and y-directions, respectively. `x and `y , respectively,

designate the distance between two neighboring nodes in

the x- and y-directions and are de®ned by `x � 1=
�nx ÿ 1� and `y � 1=�ny ÿ 1�.

The rearrangement of equations (16)±(20) gives the

following vector matrix equation:

�k�f ~Tg � ff g; �21�
where �k� is an nx � ny matrix, f ~Tg is an nx � 1 matrix

representing the unknown dimensionless nodal tem-

peratures in the s domain and ff g is an nx � 1 matrix.

The Gaussian elimination algorithm and the numerical

inversion of Laplace transform [16] are applied to invert

the temperature ~T in the s domain to that in the physical

domain. The advantage of the present method is that the

estimation of the unknown surface temperature at a

speci®c time does not need to proceed with step-by-step

computation from the initial time t � 0.

It is di�cult to apply a polynomial function to ®t a

unknown function F �y; t� for the whole time domain

considered. Thus the time domain t06 t6 tf will be

divided into some analysis ranges where t0 is the initial

measurement time. Owing to the application of the La-

place transform in the present study, t0 is not always the

initial time. This implies that the estimation of the un-

known surface temperature is carried out by discretizing

the continuous function F �y; t� in Eq. (3). Under this

circumstance, a sequential-in-time procedure is intro-

duced to estimate the unknown surface temperature.

Assume that the dimensionless measurement time step

Dte is Dte � �tf ÿ t0�=M . The discrete time coordinate tm

is tm � t0 � mDte �m � 1; 2; . . . ;M�. Each analysis inter-

val in the present study is assumed to be tmÿ16 t6 tm.

The unknown surface temperature on each analysis in-

terval can be approximated by a polynomial of degree

�p ÿ 1� in y and a polynomial of degree 2 in t before

performing the inverse calculation. On the other hand,

F �y; t� can be expressed as

F �y; t� �
Xp

i�1

�C2iÿ1 � C2it�y iÿ1; �22�

where C2iÿ1 and C2i are the unknown coe�cients and are

estimated simultaneously for each analysis interval. To

evidence the accuracy and reliability of the estimates, the

number of thermocouples, J, may be greater than the p

value.

The least-squares minimization technique is applied

to minimize the sum of the squares of the deviations

between the calculated temperatures and curve-®tted

temperature measurements taken from the ith thermo-

couple at t � tmÿ1 and t � tm. The error in the estimates

E�C1;C2; . . . ;C2p�

E�C1;C2; . . . ;C2p� �
Xm

n�mÿ1

Xp

i�1

T cal
i;n

h
ÿ T cur

i;n

i2

for m � 1; 2; . . . ;M �23�

is to be minimized. T cur
i;n is obtained from the curve- ®tted

pro®le of temperature measurements taken from the ith

thermocouple at t � tn. The estimated values of

Cj; j � 1; 2; . . . ; 2p, are determined until the value of

E�C1;C2; . . . ;C2p� is minimum. The computational pro-

cedures for estimating the unknown coe�cients

Cj; j � 1; 2; . . . ; 2p, are described as follows.

First, the initial guesses of Cj; j � 1; 2; . . . ; 2p, are

chosen. Accordingly, the calculated temperature taken

from the ith thermocouple at t � tn; T cal
i;n , can be deter-

mined from Eq. (21). Deviations of T cur
i;n and T cal

i;n at

t � tn are expressed as

ei;n � T cal
i;n ÿ T cur

i;n

for i � 1; 2; . . . ; p and n � mÿ 1;m:
�24�

The new calculated temperature T cal; j
i;n can be expanded

in a ®rst-order Taylor series as

T cal; j
i;n � T cal

i;n �
X2p

j�1

oTi;n

oCj
dCj

for i � 1; 2; . . . p and n � mÿ 1;m:

�25�

The new estimated coe�cient C�j is given in order to

obtain the derivative oTi;n=oCj and is expressed as

C�j � Cj � djdjk for j; k � 1; 2; . . . ; 2p; �26�

where dj � C�j ÿ Cj denotes the correction. The symbol

djk is Kronecker delta and is de®ned as

djk � 1 if j � k;
0 if j 6� k:

�
�27�

Accordingly, the new calculated temperature T cal; j
i;n with

respect to C�j given by Eq. (26) can be determined from

Eq. (21). Deviations of T cal; j
i;n and T cur

i;n can be de®ned as

e j
i;n � T cal; j

i;n ÿ T cur
i;n for i � 1; 2; . . . ; p and n � mÿ 1;m:

�28�
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The ®nite di�erence representation of the derivative

oTi;n=oCj can be expressed as

x j
i;n �

oTi;n

oCj
� T cal; j

i;n ÿ T cal
i;n

C�j ÿ Cj

for i � 1; 2; . . . ; p and n � mÿ 1;m: �29�
The function x j

i;n in conjunction with Eqs. (24), (26) and

(28) can be written as

x j
i;n � �e j

i;n ÿ ei;n�=dj

for i � 1; 2; . . . ; p and n � mÿ 1;m:
�30�

Thus Eq. (25) can be rewritten as

T cal; j
i;n � T cal

i;n �
X2p

j�1

x j
i;nd�j

for i � 1; 2; . . . ; p and n � mÿ 1;m;

�31�

where d�j � dCj denotes the new correction for the values

of Cj.

Substituting Eq. (31) into Eq. (28) in conjunction

with Eq. (24) yields

e j
i;n � ei;n �

X2p

j�1

x j
i;nd�j

for i � 1; 2; . . . ; p and n � mÿ 1;m:

�32�

As shown in Eq. (23), the error in the estimates

E�C1 � DC1;C2 � DC2; . . . ;C2p � DC2p� can be expressed

as

E �
Xm

n�mÿ1

Xp

i�1

�e j
i;n�2: �33�

To yield the minimum value of E with respect to Cj,

di�erentiating E with respect to the new correction d�j
will be performed. Thus the correction equations for the

values of Cj can be expressed as

X2p

j�1

Xm

n�mÿ1

Xp

k�1

x i
k;nx

i
k;nd�j � ÿ

Xm

n�mÿ1

Xp

j�1

x i
j;nej;n;

i � 1; 2; . . . ; 2p:

�34�

Eq. (34) is a set of 2p algebraic equations for the new

corrections. The new correction d�j can be obtained by

solving Eq. (34). Furthermore, the new estimated coef-

®cients can also be determined. The above procedures

are repeated until the di�erences between T cur
i;n and T cal

i;n

are all less than 10ÿ4.

3. Results and discussion

All the computations are performed on the PC. The

present numerical results are obtained by using

t0 � 0:01, Dte � 0:01, p � 3 (or p � 4) and `x � `y � 0:1.

The number of iterations is about four times for each

analysis interval using the present method. In order to

show the validity of the present method, the present

results obtained by using three-point and four-point

measurements are compared with those of Yang and

Chen [8]. The unknown boundary condition shown in

the work of Yang and Chen [8] is illustrated as follows:

T �1; y; t� � F �y; t�
� 0:1� 0:2t � 0:3t2 � 0:4t3 � 0:1y

� 0:2y2 � 0:3y3: �35�
Yang and Chen [8] did not investigate the e�ect of the

measurement locations on the estimates. Thus the pre-

sent study uses di�erent sets of the measurement lo-

cations to predict the surface temperature and

investigates the e�ect of the measurement locations on

the estimates. Table 1 shows the measurement locations

given by the present study and Yang and Chen [8]. The

measurement locations of Case A in Table 1 are in the

neighborhood of the measurement locations given by

Yang and Chen [8]. The di�erence of the present esti-

mation using the measurement locations of Yang and

Chen [8] and Case A in Table 1 is small. The present

estimation using the measurement locations of Yang

and Chen [8] have faster convergence than those using

the measurement locations of Case A in each analysis

interval. To avoid a misunderstanding, the present esti-

mates using the measurement locations of Yang and

Chen [8] are not listed in the present study. The mea-

surement locations of Case B are farther away from the

estimated surface than those listed in the work of Yang

and Chen [8]. Note that the present problem is regarded

as an inverse problem of parameter estimation in the

work of Yang and Chen [8]. On the other hand, the

functional form of the unknown surface temperature

was given in advance and seven unknown parameters

were estimated by the inverse analysis. But, in the pre-

sent study, the functional form of the surface tempera-

ture is unknown a priori. Thus the functional form, as

shown in Eq. (22), is applied to estimate the unknown

surface temperature in each analysis interval.

Figs. 2±4, respectively, show the comparison of the

surface temperature T �1; y; t� between the exact results

and the present results estimated from three and four

measuring points of Case B in Table 1 for t � 0:05; 0:15

and 0.25 with respect to x � 0. The results show that the

present numerical scheme has good accuracy even

though thermocouples are located far away from the

estimated surface. Their standard deviations of the mean

with respect to the exact data r� are all around 0.1% for

three measuring points. To show the accuracy and reli-

ability of the estimates, more temperature measurements

can be needed than the number of unknowns. Based on

this concept, the unknown surface temperature is ®rst
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estimated by using three measuring points �0:1; 0:2�,
�0:1; 0:4� and �0:1; 0:6� and then the resulting estimates

are used to determine the nodal temperature T est�0:1;
0:8; t�. Thereafter, a comparison of the exact tempera-

ture T exa�0:1; 0:8; t� and present estimate T est�0:1; 0:8; t�
is made, as shown in Fig. 5. It can be found that the

agreement between them is very good. This comparative

result further shows that the present hybrid method has

good accuracy and good reliability.

To investigate the e�ect of the measurement error on

the estimates, a comparison of the present estimates at

x � 1 and results of Yang and Chen [8] for various x
values at various dimensionless times is made, as shown

in Figs. 6±11. The surface temperature distributions at

x � 1 shown in Figs. 6±11 are obtained by using the

measuring points of Case B in Table 1. From these ®g-

ures, the results of Yang and Chen [8] using three

measuring points exhibit unstable behavior for larger x
values (i.e., x � 3% and 5%) and deviate from the exact

results. These deviations can be improved by increasing

the measuring points for the method of Yang and Chen

[8]. However, it can be found from Fig. 11(a) that the

estimates of Yang and Chen [8] still deviate from the

exact results for t � 0:25. On the other hand, the present

estimates exhibit stable behavior for various x values

and agree with the exact results even though three

measuring points are used. In general, the estimation of

the unknown surface temperature using four measuring

points is slightly better than that using three measuring

points. It is worth mentioning that the di�erence of the

present estimates and the exact results does not increase

with time. It can be observed from Figs. 2±4 and Figs. 6±

11 that the e�ect of the measurement locations on the

present estimates is not signi®cant. This further implies

that the present hybrid method can provide the good

approximation for the estimated results even though the

measurement locations are located far away from the

estimated surface.

Fig. 5. Comparison of the estimated temperature T est

�0:1; 0:8; t� and T exa�0:1; 0:8; t� for Case B and x � 0.

Fig. 4. Comparison of the present estimated F �1; y; 0:05� with

the exact one for Case B and x � 0.

Fig. 2. Comparison of the present estimated F �1; y; 0:05� with

the exact one for Case B and x � 0.

Fig. 3. Comparison of the present estimated F �1; y; 0:15� with

the exact one for Case B and x � 0.
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Fig. 7. Comparison of F �1; y; 0:05� using four measuring points for various x values: (a) Yang and Chen [8]; (b) present estimates with

Case A.

Fig. 8. Comparison of F �1; y; 0:15� using three measuring points for various x values: (a) Yang and Chen [8]; (b) present estimates with

Case A.

Fig. 6. Comparison of F �1; y; 0:05� using three measuring points for various x values: (a) Yang and Chen [8]; (b) present estimates with

Case A.
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Fig. 9. Comparison of F �1; y; 0:15� using four measuring points for various x values: (a) Yang and Chen [8]; (b) present estimates with

Case A.

Fig. 10. Comparison of F �1; y; 0:25� using three measuring points for various x values: (a) Yang and Chen [8]; (b) present estimates

with Case A.

Fig. 11. Comparison of F �1; y; 0:25� using four measuring points for various x values: (a) Yang and Chen [8]; (b) present estimates

with Case A.
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4. Conclusion

The hybrid application of the Laplace transform

and the FDM in conjunction with the least-squares

scheme and a sequential-in-time concept is successfully

applied to estimate the unknown surface temperature

from temperature data measured at some locations in a

plate. The functional form of the unknown surface

temperature is unknown a priori. Since the present

method is not a time-stepping procedure, the unknown

surface temperature at any speci®c analysis sub-time

interval can be predicted from the temperature mea-

surements inside the plate without any step-by-step

computations from t � t0. The present estimates exhibit

stable behavior for various x values and agree with the

exact results even though three measuring points are

used. A small e�ect of the measurement locations on

the estimates can be observed in the present study. This

implies that the present hybrid method o�ers a great

deal of ¯exibility.
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